
2 2 

and the Kolmogorov frequency is 
NK = ~1/4 v-3]4 U/2~. 

The calculations give ~ = 18.7 cm2/sec 3 and N K = 56.4 Hz. 

The following conclusions can be drawn from our measurements under natural conditions: 
The automated measurement system is reliable in service; the software developed for it can 
be used to compute a large set of statistical parameters characterizing the fine structure 
of oceanological processes; the programs operate reasonably economically and efficiently; 
measurements of the one- and two-point moments indicate that the bottom zone in the experi- 
mental test region can be treated as a fully developed boundary layer, on which are super- 
imposed modulated polycyclic processes, which can be filtered out in two-dimensional spectral 

processing. 

NOTATION 

H, probe submersion depth; IT, Taylor time microscale; IU, Taylor space microscale; AU, 
velocity macroscale; 6, boundary layer thickness; G, dissipation function; NK, Kolmogorov 
function; RUU , RUIUI , Rtt, autocorrelation functions; Indices: CA, HA, RT, measurements per- 
formed with a conduction anemometer, hot-wire anemometer, and resistance thermometer, re- 
spectively. 

1. 

2. 
3. 

4. 
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DIFFUSION AND MIXING OF PASSIVE IMPURITIES IN A LINEAR 

VELOCITY FIELD 

V. P. Kabashnikov and A. A. Kurskov UDC 533.73:532.517.4 

It is shown that the mixing process is described by a Lagrangian Green's function~ 
The latter is obtained at both the dynamical and the statistical levels, which 
permits application of the results to turbulent media. 

The question of the mixing of substances down to the molecular level occupies a special 
position in the problem of chemical reactions in turbulent media [i]. The mixing of sub- 
stances is conditioned by molecular diffusion, which can play an appreciable role only at 
distances on the order of the internal scale of turbulence, where a linear dependence of 
relative velocities on distance holds. 

The dynamical problem of diffusion of a scalar passive impurity in an unbounded linear 
velocity field was investigated in [2-5]. A study of the statistical characteristics of the 
field of a passive impurity in a medium with linear velocities was the subject of [6-8], 
where the structure function and short-wavelength asymptotic form of the concentration spec- 
trum were obtained. A number of precise analytical results, particularly the spectrum of 
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fluctuation of the passive scalar in the dissipation region and its distribution function, 
were obtained in [9] for a velocity field 6-correlated in time. The results of a theoretical 
investigation of the process of mixing of spatially separated substances are given in the 
present article. First we consider the dynamical problem of diffusion in a medium whose 
velocity depends linearly on the coordinates, but without any restrictions on the form of the 
velocity-gradient tensor 6ij(t) , in contrast to [2-9]. It is shown that the result of the 
mixing (the integral over space of the product of the concentrations of the substances being 
mixed) depends only on the sum of the coefficients of diffusion and is described using a 
Green's function which depends on the Lagrangian coordinates. The very process of mixing 
can be interpreted as the "drifting" in Lagrangian coordinates of a cloud of one of the sub- 
stances, to which the total coefficient of diffusion is assigned, onto the initial distribu- 
tion of the other substance. 

In the third part, devoted to statistical averaging, an equation is derived for the aver- 
age concentration and average Lagrangian Green's function under the assumption that the time 
dependence of the velocity is a random, Gaussian, 6-correlated process. In addition, expres- 
sions are given for the tensor of dispersion of the impurity cloud in Lagrangian coordinates, 
and the characteristic times of mixing of arbitrary volumes of impurities are estimated. 
Estimates of the region of applicability of the results obtained are given in the conclusion. 

Analysis of the Dynamical Problem. Let the arbitrary distributions of the concentra- 
tions of two substances, c~(x) and c~(X), with unit masses, be assigned in a turbulent medium 
at the initial time. 

The dynamic equation describing the variation of a concentration c(• t) in a moving 
incompressible liquid has the form 

c (x, t) 0 c (x, t) §  t) - ~ A c ( x ,  t), (1)  
0 t ax i 

where v(x, t) is the velocity of the liquid; and ~, coefficient of molecular diffusion. At 
distances on the order of or less than the internal scale of turbulence, the liquid velocity 

depends linearly on the coordinates [i0]: 

v~ (x, t) = ~ j  (t)xs. 2) 

The matrix [io(t) I[ in a turbulent liquid is a random function of time. 

We change from the Eulerian coordinate system x to the Lagrangian system X, 

X~ = a~ (t) xj, 3) 

where the elements of the matrix [[aIIsatisfy the equation 

aij (t) = - -  a~ ~hY, ais (0) = oij. 4) 

In the Lagrangian coordinate system Eq. (i) has the form 

Oc(X, t) 02c(X, t) 
- ~ a~ ahs 5) 

Ot O XiO Xh 

The solution of Eq. (5) can be written in the form 

c(X, t ) =  S $ ( X - - Y ,  t) co (Y )dy ,  (6) 

where ~ is the so-called Lagrangian of Green's function, describing how a substance diffuses 
in the Lagrangian coordinate system if its initial concentration distribution had the form 

of a 6-function: 

(R ,  t) = (2a) -a 5 exp { ikj Rj - -  ~ bjn kj kn } dk. (7) 

The matrix llbl[, the elements of which satisfy the equation 

bsn (t) = ~h anh, b~n (0) = O, (8) 

is symmetrical, positive definite, and depends only on the deformagional part of the trans- 
formation (3). 

Using (3), (6), and (7), we find the solution of Eq. (i): 

c(x,  t ) =  f G(x, /[y) c~ (9) 
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where G is the Green's function of Eq. (i), henceforth called the Eulerian equation, since 
it describes diffusion in the Eulerian coordinate system: 

~dk. 6(x,  tly) = ( i s )  -:~ ( exp { - -  ikj gj -c ia~ kj x~ , -  IJb~ kj k~ 
(i0) 

The Lagrangian and Eulerian of Green's function are connected by the relation 

s (R, t) = G (0, fiR). ( n )  

We i n t r o d u c e  t h e  R i c h a r d s o n  f u n c t i o n  ~(X, r [10] f o r  t h e  c o n c e n t r a t i o n s  c l  and cz o f  
the substances : 

~ (x, t) -- S q (y' i) c. (y -[- x, l) dy, (12) 

which in the velocity field (2) satisfies an equation analogous to (i): 

___ 0~ 
~ ~ V~ -- (P1--~%) Aq< (13) 

Ot O x~ 

The Lagrangian of the Richardson function, iF(X, t), defined as 

~ ( X ,  t)---- [ cl(Y, t) c~(Y@ X, t) ctV, (14) 

satisfies an equation of the type (5): 

O~ 0iT 
= ( ~  + ,ai) e ;  a~; (15)  

Ot OX~ OX~ 

S e t t i n g  c l  = c2 i n  ( 1 2 ) ,  we can  i n t r o d u c e  t h e  t e n s o r  o f  d i s p e r s i o n  o f  t h e  E u l e r i a n  d i m e n s i o n s  
r i j  o f  t h e  c l o u d  o f  d i f f u s i n g  i m p u r i t y :  

rij ----- j" xixjt~ (x, [) dx, (16) 

equal to twice the moment (x i -- xi)(xf -- xj) of the density distribution of the impurity 

cloud relative to its center of gravity x: i' xc(x) dx. 

Similarly, we introduce the dispersion tensor for the Lagrangian dimensions Rij of the 
cloud: 

I%j = ~ X~X]Vf " (X, t) dX ---- 2 (X~ -- A%) (Xj --)2j, (17) 

w h i c h ,  with the help of (15) and (8), can be written in the form 

Bu (t) = R~ j" X iX ja  (X, t) dX = R~ q- 4,abu (l), (18) 

The degree of mixing of the two substances in the entire volume, determined by the 
value of ~(x, l) at • can be written in the Eulerian (12) or Lagrangian (14) repre- 
sentations : 

t~ (0, t) = ; c~ (y, t) c2 (y, t) dy : f c~ (Y, t) c2 (V, t) du (19) 

The mixing of the substances is closely connected with diffusion in the Lagrangian coordinate 
system. Using the similarity of Eqs. (5) and (15), we can write the quantity ~(0, t) in a 
form analogous to (6): 

0 X , (0, t) : ! ,~ (X, /)[ul+g~Vo(x) dX = j" e 1 (X, ~)]u,+g~c2 ( ) dX. (20) 

In accordance with (20), the mixing process can be treated as the "drifting" in La- 
grangiancoordinates of the concentration distribution of a substance with a total coeffi- 
cient of diffusion c I(X, l)I~+~ onto the initial concentration distribution c~(X) of the other 
substance. 

Let the mixing substances be spatially separated at the initial time (i.e., ~(0, 0) = 0) 
and the distance between the centers of gravity x? and x~ of the distributions c~(x) and c o (x) 
equal R. By mixing time we shall understand the time in which appreciable overlapping of 
el(x, 0 and ci(x, t) or, by virtue of (20), c~(X, Qlm+~ and c$(X) occurs,which corresponds to 
to the maximum of the time dependence ~(0, t). It follows from Eq. (5) that diffusion does 
not alter the position of the center of gravity of the impurity cloud in the Lagrangian co- 
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ordinate system. Then it is easy to see that pronounced overlapping of c1(X , t)]~+~ and c~ (X) 
occurs when the average Lagrangian dimension q(X, l)l~,+~ of the cloud is comparable with the 
initial distance between the substances being mixed: 

( x~ - -~? )~  ~ R ~. (21)  

We note that in the case when the initial distributions of the substances had the form of 
6-functions separated by a distance R, ~0(X)=6(X--R) and the degree of mixing in the entire 
volume is described, in accordance with (20), by the Lagrangian Green's function 9 (R, Q[~,+~,. 

Model of 6-Correlated Random Velocities. We assume that the matrix oij(t) represents 
a Gaussian, stationary, random process ~-correlated in time. Averaging Eq. (i) over realiza- 
tions of the velocity field using the method of [ii], a detailed exposition of which is con- 
tained in [12] and [13], we obtain, allowing for the isotropy of the velocity field, 

[ 0z 1 
_ ~ 0  < c ) = D 2x2A ~ & x j  { c > 4- ~tA ( c ) ,  (22) 

Ot ' o & a x j  

where 

2a % (23) 
D - -  - -  ~ k2E (k, m = O) dk; 

15 J 
0 

E(k, ~) is the spatial--temporal spectral density of turbulent energy; and <...> is an aver- 
age over the ensemble of realizations of the velocity field. Because the differential opera- 
tor on the right side of (22) is Hermitian, Eq. (ii) takes the form 

< 9 (R, t) > --- < O (0, fiR) > = < O (R, tl0) > (24) 
o 

Thus, <9> satisfies Eq. (22) with the initial condition c = 6(x). The solution of Eq. 
(22) and the asymptotic form of <9> are given in the Appendix. 

We obtain the equation for <rij> by using the moment xix j from (22) and allowing for the 
similarity between (i) and (13): 

< ru > ---- 4~6u -k D [46u < r~ > -- 2 < ru ) ]. (25) 

The system (25) has the solution 

< ru ) = ri ~ exp ( - -  2Dt) (i =/: j), (26) 

<ru> ~ r ~ j e x p ( - - 2 D t ) - F ~  exp(10Dt)--I § 

~ ] r~n exp(10D 0 -  exp (-- 2Dt) (i = ]), (27) +-T- 
< rnn > < (x_x)2. > o 6F (28) = = r n ~ e x p ( l O D t )  4- ~ -  [exp(10Dt)-- II. 

A characteristic feature of diffusion in the Eulerian coordinate system is that the initial 
shape of the impurity cloud is rapidly left behind, even when p = 0, because of the isotropy 
of the velocity field, as well as the exponentially rapid increase in the average size of 
the cloud [6, 12]. Equation (24) lets us write the dispersion tensor for the Lagrangian di- 
mensions of the impurity cloud (17) in the form 

2~ 
< Ru > = R~i + 6 u - - ~  [exp(10 Dr)- -  1], 

[exp (10 DO--  11. 

(29) 

(30) 

Diffusion in the Lagrangian coordinate system is characterized by spherization and an expo- 
nentially rapid increase in the size of the impurity cloud, taking place only for p # 0, 
however, which is connected with the elimination of the influence of the drift of a liquid 
particle over the average size of the cloud in the Lagrangian coordinate system. 

Knowledge of the average Lagrangian radius of the cloud allows one to estimate through 
(21) the time of mixing two substances preliminarily separated by a distance R: 
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5D 
t,,, = ( 1 0 D ) - ~  i n  (1 ~- - R2). 6,~t (31) 

The region of applicability of the model of 6-correlated velocities can be illustrated 

on the example of a problem which admits of an exact solution without the assumption of 6- 

correlation. 

Let us consider the increase in the Lagrangian size of an impurity cloud having an ini- 
tial distribution in the form of a 6-function in a velocity field characterized by a velocity- 

gradient tensor 

3 
(32) ~j(t)  = aua~(t), ~ a~ = o, 

i = l  

where ai(t) is a Gaussian, stationary, random process. Here and below there is no summation 

over the recurrent indices. Using (18), (4), and (8), we find 

Z T 

0 0 0 

Repeating the operations based on the 5-correlation approximation, which result in (22), 
(25), and (29) but with the velocity field corresponding to (32), we obtain 

Lt 

( Rii } - -  ' ( e x p ( 4  A , t ) -  1), ( 3 4 )  
2A~ 

where 

oo 

Ai = i < a, (o) a~ (t) > dr. (35) 

Equation (33) changes into (34) if thetimes under consideration markedly exceed the 

velocity-correlation time, which evidently is the main condition for applicability of the ap- 
proximation of 6-correlated velocities to the mixing problem. 

In conclusion, we estimate the region of applicability of the results obtained. In ac- 
cordance with (23), the quantity D can be estimated as 

D ~ ~ . - - D L L ( X ) i x = O  ~ V s = ~ T 7  l , ( 3 6 )  
dx ~ e v 

where DLL is the velocity structure function; and T,, velocity-difference correlation time, 
conforming in order of magnitude with the characteristic time of the internal scale TZ 
~ / ~ - ~ / ~ .  

The results obtained in the report are valid at distances much less than the internal 
scale ~ ~ v3/4~ -I/4 and at times longer than ~l- It follows from (28) that an impurity cloud 
initially represented by a ~-function reaches a size of order ~ in a time 

6~ / - ~ f f  - (37) 

For ~v the time t~ is comparable with T l or less than it. In such times the influence of 
convective transfer on the diffusion of the cloud and mixing is not yet able to be felt. 

In the opposite limiting case (~<<v) the time for the cloud to reach the size ~l is 
tt>>Tl. In this case the approximation of 6-correlated velocities is valid. It follows from 
(28), (30), and (A.4) that for ~<<v there is an interaction between diffusion and hydro- 
dynamic motion, resulting in a sharp increase in the cloud expansion velocity and consder- 
ably intensifying the mixing process compared with the case of a stas medium. 

APPENDIX 

In accordance with (24), the equation for the average Lagrangian Green's function co- 
incides with Eq. (22) with an initial condition represented by a ~-function at the origin 
of coordinates. Since with a spherically symmetrical initial condition the solution of (22) 
depends only on the absolute value of the coordinate, for the average Lagrangian Green's func- 
tion we obtain the equation 
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~q(x' t)=2(DxZ-k[*) I ff"q- 2$'x ] -2Dxz'~" (A.I) 

with the initial condition 

(~, o ) _  6' (x) 
2:~x (A. 2) 

Equation (A.I) describes the diffusion in Lagrangian variables of a substance for which the 
coefficient of molecular diffusion equals 2~. 

Changing to the dimensionless variables 

V D ~=Dt Y ~ X _~_, (A.3) 

in (A.I) and (A.2), separating the variables in (A.I), and using Fourier and Kantorovich-- 
Lebedev [14] transformations, we obtain the solution of (A.I) with the initial condition 
(A.2) in the form 

exp ( 9~4 -) P 
d~ ~shn~ exp (-- a2T) x ,~(r, '~)= (--D--D ~3/z 

• lP 2 -~--q- - 7 .  F -$--k  2 
3 i~ 3 
4 2 2 ' rZ )'  ( A . 4 )  

where F(a, b, c, z) is a hypergeometric function. 

From (A.4) we can obtain the following asymptotic forms: 

for ~ << 1 (_) (r2) ~(r, ~)= D a/2 (4a~)-aPexp ; (A.5) 
2[* 4. 

for ~ ) 1 ,  r<<l 

for T)>I, l<<inr<<~ 

( D )  312 

(3) D [ exp / - - - -  8aW2 .~3/2 
9T 
4 J'  

3 9z 
Fz(- -~-  ) exp ( 4 ) lnr exp ( ln2__fr); 

8aS/2ra/-~3/2 4~ 

for ~ >> 1, In r ~2 ~ 

(A.6) 

(A. 7) 

D )a/~ 
exp ( 9~ 

4 ) lnrexp(_ ln2r+21n21nr 
8~  ~ / ~~ r a/2,~a/~ 4~ )" 

(A.8) 

NOTATION 

aij , matrix of conversion from Eulerian to Lagrangian coordinates; c(x, t), concentra- 
tion of a substance at the point x at the time t; c1(X, 01~,+~, concentration of a substance 
characterized by a coefficient of molecular diffusion of UI + U2; E(k, m), spatial--temporal 
spectral density of turbulent energy; $(x,t), Green's function of Eq. (5); O(x, L1y), Green's 
function of Eq. (i); l, internal scale of turbulence; rij , tensor of dimensions of cloud of 
diffusing impurity in the Eulerian coordinate system, defined by Eq. (16); R, initial distance 
between centers of gravity of concentration distributions of the mixing substances; Rij , 
tensor of dimensions of the cloud of diffusing impurity in the Lagrangian coordinate system, 
defined by Eq. (17); t, time; t~, time in which the Lagrangian size of the impurity cloud be- 
comes equal to the internal space of turbulence; tm, mixing time; vi(x , t), i-th Cartesian 
velocity component of the medium at the point xat the time t; x, y, Eulerian vectors; X, Y, 
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Lagrgangian vectors; &, Laplace operator; s, specific rate of dissipation of turbulent energy; 
D, coefficient of molecular diffusion; ~, coefficient of kinematic viscosity; ~ij, velocity- 
gradient tensor; T~, characteristic time of the internal scale of turbulence; @(x) , Richard- 
son function (12); ~(X), Lagrangian of Richardson function (14). Indices: i, j, k, number- 
ing of Cartesian components (they take values of I, 2, 3); o, initial value; -, averaging 
over cloud density; ", time derivative; ', derivative with respect to a coordinate. 
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